The 7th workshop on nuclear mass table with DRHBc theory, July 1-4 ,2024,Gangneung,Korea

Progress report for superheavy nuclei with $111 \le Z \le 120$

Yanxin Zhang¹

Supervisor: Jiangming Yao¹

Collaborator: Boran Liu¹, Kaiyuan Zhang^{2,3}

¹Sun Yat-Sen University 2 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics ³School of Physics, Peking University

◆ Numerical details

◆ Ground-state properties

◆ Shell structure

Project plan

Progress for superheavy nuclei with $111 \le Z \le 1$

Neutron number N

- \checkmark The DRHBc mass table for even-even nuclei has been established. DRHBc Mass Table Collaboration, Atom. Data Nucl. Data Tabl. 144, 101488 (2022)
- The DRHBc mass table for even-Z nuclei has been established. DRHBc Mass Table Collaboration, Atom. Data Nucl. Data Tabl. 158, 101661 (2024)

Progress for odd-Z nuclei with $111 \le Z \le 119$

Neutron number N

 \checkmark Unconstrained and constrained for PEC calculations for 387 oddeven nuclei and 377 odd-odd nuclei have been finished.

Y. X. Zhang, B. R. Liu, K. Y. Zhang, J. M. Yao, arXiv:2405.07704

 \checkmark For each nucleus, 11 initial deformations -0.4, -0.3, ..., 0.6 are taken.

◆ Introduction

◆ Numerical details

◆ Ground-state properties

◆ Shell structure

Numerical Details

- Nuclei : Odd-even and odd-odd nuclei with $Z = 111 119$
- Box size : $R_{\text{box}} = 20$ fm
- Mesh size : $\Delta r = 0.1$ fm
- Energy cutoff : $E_{\text{cut}} = 300 \text{ MeV}$
- \checkmark Angular momentum cutoff : $J_{\text{max}} = 23/2 \; \hbar$
- \checkmark Legendre expansion order : $\lambda_{\text{max}} = 10$
- Density functional : PC-PK1
- Pairing strength : -325.0 MeV fm³

DRHBc Mass Table Collaboration, Phys. Rev. C 102, 024314 (2020) DRHBc Mass Table Collaboration, Phys. Rev. C 106, 014316 (2022)

7

◆ Introduction

◆ Numerical details

◆ Ground-state properties

◆ Shell structure

◆ Summary

Comparison with AME2020 empirical mass data

 \checkmark The empirical data from AME2020 are estimated from the trends in mass surface, together with all available experimental information.

M. Wang, et. al., Chin. Phys. C 45, 030003 (2021).

 \checkmark Considering 204 evaluated data, DRHBc provides an accurate prediction with most of the deviations within 1 MeV.

> He, et. al., Phys. Rev. C 110, 014301 (2024) See X.T. He's talk

The stability peninsula

- \checkmark The sudden decrease of S_n from positive to negative after N = 258 suggests it as a possible magic number.
- \checkmark The stability peninsula formed beyond N = 258 in the Z = 106-112 region.
- \checkmark A odd-N nucleus is less stable than its neighboring even-N nuclei with a smaller one-neutron separation energy in the peninsula.

He, et. al., Phys. Rev. C 110, 014301 (2024)

Two-neutron separation energies and shell gap

- \checkmark Apparent peaks of Z=117-120 isotopes at $N = 172, 258$.
- \checkmark Apparent peak of Z=117, 118 isotopes at $N = 184$.
- \checkmark The neutron dripline is contracted by deformation.

α-decay energies

- There are apparent peak after $N = 258$ in the four isotopic chains. An additional peak after $N = 184$ in the Z = 117, 118 isotopes.
- With the rotational correction energies, we can observe more oscillations in the Q_{α} values around $N = 180$.
- \checkmark The observed irregular behavior of the Q_α values in each isotopic chain is attributed to shell effects and shape transition.

Rms radius and quadrupole deformation

- \checkmark The sudden shape transformations from spherical to large prolate shape deformation near $N=184$ and $N=266$
- \checkmark The sudden increases of rms radii correspond to the drastic deformation changes.
- \checkmark The evolution of deformation can be understood with the help of potential energy curves.

Potential energy curves for *Z* = 119 isotopes

- \checkmark The competition between minima can be found near $N = 184$ and $N = 266$.
- \checkmark The shape coexistence is responsible for the observed sudden shape transitions.
- \checkmark The evolution of the minima can be understood with shell structure.

◆ Introduction

◆ Numerical details

◆ Ground-state properties

◆ Summary

Single-particle orbitals and shell gap

 \checkmark There are two large spherical neutron shell gaps at N = 172 and N = 184.

 \checkmark The N = 172 shell gap extends from sphericity to an oblate shape $\beta \approx -0.15$, explaining the isotopes around $N=172$ are spherical or weakly deformed.

Single-particle orbitals and shell gap

- \checkmark There are large shell gaps around $N = 184$ in the spherical side and prolate side with $\beta \approx 0.5$.
- \checkmark It explains the shape transition from spherical to a large prolate deformation in the ground state

Single-particle orbitals and shell gap

- \checkmark There are large shell gaps around $N = 194$ in the oblate side with $\beta \simeq -0.4$ and prolate side with $\beta \simeq 0.4$.
- \checkmark It explains the development of competing prolate and oblate deformed energy minimum in the isotopes around $N = 194$.

Shape coexistence

 \checkmark The coexistence of competing prolate, oblate, and spherical shapes leads to sudden changes in both quadrupole deformations and rms radii as functions of neutron numbers.

- \checkmark With the increase of neutron number, the N = 184 shell gap decreases significantly, while $N = 172$ shell gap is rather robust.
- \checkmark An evident discontinuity occurs at N = 258, where pairing correlation between neutrons collapses.

- \checkmark Our results indicate that N = 172, 258 are the next two magic numbers for neutrons in superheavy nuclei beyond $N = 126$.
- \checkmark The spherical neutron shell gap N = 258 decreases monotonically as the neutron number increases due to intruder state $1k_{15/2}$

- \checkmark The large spherical shell gaps at $Z = 114,120$.
- \checkmark The shell gap at Z = 120 decreases globally with the increase of neutron number due to the intruder orbital $1i_{11/2}$.

- \checkmark The shell gap at $Z = 114$ is formed by the spin-orbit splitting of the 2f states.
- \checkmark The intruder orbital and spin-orbit potential has an obvious effect on the shell gap.

Shell gap and spin-orbit splitting

 \checkmark The size of the Z = 120 and Z = 138 shell gaps are influenced by the splitting of the proton 3p states, smaller splittings correspond to larger shell gaps.

 $N=172$, 258 proton shell closure is related to the spin-orbit splitting of neutron 3d and 4p states, respectively.

Single-particle levels in the vicinity of the Fermi energy for the isotopes of $Z=120$ versus the neutron number.

The spin-orbit splitting

 \checkmark The energy splitting of spinorbit doublet states is defined as:

$$
\Delta \epsilon_{nlj} = \frac{\epsilon_{nlj_{<}} - \epsilon_{nlj_{>}}}{2l + 1}, \quad j_{\gtrless} = l \pm 1/2.
$$

- \checkmark The energy splittings of the 3p doublet proton states and 3d neutron states are generally small, changing sign around $N = 252$ and $N = 172$, respectively.
- \checkmark It is attributed to the central depression (bubble structure) in nucleonic densities.
- Spin-orbit splitting in the spherical states of $Z = 120$ isotopes as a function of neutron number

The spin-orbit splitting and nucleonic density

The $L = 0$ component of the nucleon density in $Z = 120$ isotopes

 \checkmark The densities are expanded in terms of the Legendre polynomials :

$$
f(\mathbf{r}) = \sum_{L \ge 0} f_L(r) P_L(\cos \theta),
$$

- \checkmark The formation of bubble structure induces a spin-orbit potential around the nuclear center, which cancels the contribution around the nuclear surface.
- \checkmark It mainly affects the spin-orbit splitting of low orbital angular momentum states.

◆ Introduction

◆ Numerical details

◆ Ground-state properties

◆ Shell structure

Summary

-
- \checkmark The DRHBc mass table calculations for odd-even and odd-odd nuclei with $Z = 111 - 119$ have been finished.
	- 1. The properties of ground states of $Z = 111 120$ isotopes are discussed.
	- 2. Shape coexistence is responsible for the sudden shape transitions.
	- 3. Shell structure is associate with intruder orbital and spin-orbit splitting, which is associate with the nucleonic density.
- ✓ Next: Developing projection method and generator coordinate method . ➢ Verifying the calculation of rotational correction energy.
	- \triangleright Considering the effect of shape mixing.
	- \triangleright Calculating the low excitation energy.

Thank you for your attention!

Two-neutron separation energy and drip line

- ✓ Sudden decreases indicate shell closures and subshells.
- \checkmark Several odd-even nuclei are also found in the predicted peninsula.

One-proton separation energy

- \checkmark S_p gradually increases with the neutron number.
- \checkmark The proton drip line could be ²⁸⁸119 or ²⁸⁹119.

Shell structure of superheavy nuclei

- \checkmark Shell structure is crucial for the stability of superheavy nuclei.
- \checkmark The structural properties of superheavy nuclei have been studied with different types of nuclear model:

Mic-mac model: Wang, et.al., Phys. Lett. B 734, 215(2014) Mean-field model : Cwiok, et.al., Nucl. Phys. A 611, 211 (1996)

✓ Previous studies based on self-consistent mean-field approaches indicate that the proton and neutron numbers with $(Z = 114, N = 184)$, $(Z = 120, N = 172)$, and $(Z = 126, N = 184)$ are possible magic numbers in superheavy nuclei . Bender, et.al., Phys. Rev. C 56, 238 (1997)

Cwiok, et.al., Phys. Rev. Lett. 83, 1108(1999)

 \checkmark The specific values vary with the employed parametrizations of EDFs Bender, et.al., Phys. Rev. C 60, 034304 (1999)