The 7th workshop on nuclear mass table with DRHBc theory

July 1-4, 2024, Gangneung Green City Experience Center, Gangneung, Korea

Progress Report for nuclear region with Z = 127, 128

Speaker: Xiao Lu (陆晓)

Collaborators: Lu-Qi Li (李路琦), Xue-Wei Li (李雪薇), Hao Lu (陆浩), Zhan-Jiang Lian (连占江)

Yong-Jing Chen (陈永静), Ying-Xun Zhang (张英逊), Shan-Gui Zhou (周善贵)

Institute of Theoretical Physics, Chinese Academy of Sciences & Center for Theoretical Physics, China Institute of Atomic Energy

- Calculation progress
- > Numerical details for Z = 127, 128
- > Preliminary results
- ➤ Summary

Calculation progress

> Numerical details for Z = 127, 128

> Preliminary results

➤ Summary

Calculation Progress

DRHBc Calculations	Neutron (<i>N</i>)	<i>Z</i> = 127	<i>Z</i> = 128
Unconstrained	Odd-N		•
	Even-N	•	
Constrained	Odd-N	•	0
	Even-N	0	•
Completed			
In progress			
O Preparing to start	Ę		

- **Z** = **127** Odd-*N*: Xiao Lu (陆晓), ITP, CAS; Even-*N*: Xue-Wei Li (李雪薇), CIAE
- **Z** = **128** Odd-N: Lu-Qi Li (李路琦), CIAE; Even-N: Hao Lu (陆浩), CIAE

Numerical details

- Density functional: PC-PK1
- Version: Code_DRHBc_202401
- Box size: $R_{\text{box}} = 20 \text{ fm}$
- Mesh size: $\Delta r = 0.1$ fm
- Energy cutoff: $E_{cut} = 300 \text{MeV}$
- Angular momentum cutoff: $J_{\text{max}} = 23/2 \hbar$
- Pairing strength: $V_0 = -325 \text{ MeV} \cdot \text{fm}^3$
- Legendre expansion order: $\lambda_{max} = 10$
- Initial deformation $\beta_2 = -0.4, -0.2, ..., 0.4, 0.6$

Calculation progress

> Numerical details for Z = 127, 128

> Preliminary results

➤ Summary

Fermi Energy

- 323 nuclei satisfy both $\lambda_n < 0$ and $\lambda_p < 0$.
- $Z = 127:189 \le N \le 350$
- $Z = 128:190 \le N \le 350$

One & Two Neutron Separation Energy

- For both isotopic chains, significant odd-even staggering exists in S_n .
- In the neutron-rich region, nuclei are weakly bound against two-neutron or one-neutron emission, and even some unbound nuclei exist (≥11 nuclei).
- \succ Current calculation results indicate the number of bound nuclei is less than 312.

Quadrupole deformation

- Most nuclei exhibit prolate shapes.
- As the number of neutrons increases, the quadrupole deformation parameter gradually approaches zero.

Pairing Energy

- The odd-even staggering has been observed in E_{pair}^{n} , which is caused by the unpaired particle.
- The sudden changes in E_{pair}^{n} are related to the changes in deformation.
- $E_{\text{pair}}^{\text{p}}$ is close to zero or even vanish.

Neutron rms radii

 $r_0 = 1.140 \text{ fm}^{[1]}$

- The systematic trend of the neutron radii can be roughly described by the empirical formula.
- The sudden changes in R_n are related to the changes in deformation.

[1] P. Guo, X. Cao, et al., At. Data Nucl. Data Tables 158, 101661 (2024). 11

Potential energy curve

For neutron-deficient atomic nuclei, the Legendre expansion truncations up to 12 may be necessary to obtain the stable results.

Summary

- Unconstrained DRHBc calculations for Z = 127 and Z = 128 isotopic chains are almost completed.
- ➤ Almost 312 bound nuclei are predicted.
- > The Legendre expansion truncations with $\lambda_{max} = 10$ may not be sufficient to obtain the ground sate of neutron-deficient atomic nuclei; conducting higher truncation is suggested to test the convergence.

Next step

Perform constrained calculations to construct potential energy curves, in order to further check the results.

Thank you for your attention!

2024.07.03