The 7th International Workshop on DRHBc Mass Table 2024-07-03

G16: **Progress Report 132** \leq Z \leq 136

Peng Guo 1 , Sibo Wang 2 , Xin-Hui Wu 3

(郭鹏) (王锶博) (吴鑫辉)

(土银

¹School of Physics, Peking University
²Department of Physics, Chongqing University
³Department of Physics, Fuzhou University

Naming rule of unknown elements

In the 6th international Workshop on DRHBc Mass Table, calculations of nuclei with Z > 120 have been added to the schedule.

Group	Nuclear region	Team	Principal investigator	Email
		BNU	Jing Peng	jpeng@bnu.edu.cn
G-12*	Z = 121 to Z = 123	NCEPU	Zhenhua Zhang Yuanyuan Wang	zhzhang@ncepu.edu.cn yywang1021@ncepu.edu.cn
		INPC, CAEP	Kaiyuan Zhang	zhangky@pku.edu.cn
G-13*	7 - 124 to 7 - 126	JNU	Lang Liu	liulang@jiangnan.edu.cn
	2 - 124 to 2 - 120	AHNU	Cong Pan	cpan@ahnu.edu.cn
G-14*	Z = 127 to Z = 128	CIAE	Yingxun Zhang Zhanjiang Lian	zhyx@ciae.ac.cn lian180821@163.com
		ITP-CAS	Xiao Lu	luxiao@itp.ac.cn
G-15*		НКО	To Chung Martin Yiu	yiutc@connect.hku.hk
	Z = 129 to Z = 131	UTokyo	Haozhao Liang	hzliang@g.ecc.u-tokyo.ac.jp
		JLU	Jian Li	jianli@jlu.edu.cn
G-16*	Z = 132 to Z = 136	PKU	Peng Guo	2301110125@pku.edu.cn
		CQU	Sibo Wang	sbwang@cqu.edu.cn
		FZU	Xinhui Wu	wuxinhui@fzu.edu.cn

Summary of the 6th International Workshop on DRHBc Mass Table

These unknown elements do not have official names yet.

Naming rule of unknown elements

\swarrow Temporary naming rule for unknown elements with $101 \le Z \le 999$.

Recommended by the International Union of Pure and Applied Chemistry

- The name is derived directly from the atomic number of the element using the following numerical roots:
- 2. The roots are put together in the order of the digits which make up the atomic number and terminated by 'ium' to spell out the name. The final 'n' of 'enn' is elided when it occurs before 'nil', and the final 'i' of 'bi' and of 'tri' when it occurs before 'ium'.
- 3. The symbol of the element is composed of the initial letters of the numerical roots which make up the name.
- 4. The root 'un' is pronounced with a long 'u', to rhyme with 'moon'. In the element names each root is to be pronounced separately.

J. Chatt, Recommendations for the Naming of Elements of Atomic Numbers Greater than 100, Pure and Applied Chemistry, 51, 381 (1979)

Naming rule of unknown elements

 \ge Naming rule for the unknown elements with $101 \le Z \le 999$.

Digit	Root	Naming Rule:		
0	nil	Atomic number: 100*a + 10*b + 1*c		
1	un	a. b. c ∈ (0. 1. 29)		
2	bi	$\mathbf{N}_{\mathbf{r}} = \mathbf{n}_{\mathbf{r}} = $		
3	tri	Naming: root(a)+root(b)+root(c) + ium		
4	quad	Example for Z=136:		
5	pent	Atomic number: 136		
6	hex			
7	sept			
8	oct	<mark>U</mark> n <mark>t</mark> ri <mark>h</mark> ex ium		
9	enn	Naming: Untrihexium (Uth)		

Z	132	133	134	135	136
Name	Untribium	Untritrium	Untriquadium	Untripentium	Untrihexium
abbr.	Utb	Utt	Utq	Utp	Uth

Progress Report $132 \le Z \le 136$

Numerical detail

$\stackrel{\frown}{=}$ Numerical detail for $101 \leq Z \leq 136$

- Code Version: Code_DRHBc_202401
- Box size: $R_{\text{box}} = 20 \text{ fm}$
- Mesh size: $\Delta r = 0.1$ fm
- Energy cutoff: $E_{\text{cut}} = 300 \text{ MeV}$
- Angular momentum cutoff: $J_{\text{max}} = 23/2 \hbar$
- Legendre expansion order: $\lambda_{max} = 10$
- Relativistic density functional: PC-PK1
- Pairing strength: -325 MeV fm³
- Blocking treatment: Automatic

DRHBc Mass Table Collaboration, Phys. Rev. C 106, 014316 (2022) Suggested in the 58th Skype meeting

Uth (Z = 136) isotopes

Determining the ground state

 \swarrow Results from different initial β_2 (unconstrained calculations)

Initial beta	<i>E</i> _{totcm} [MeV]	beta	steps	si
-0.4	-2556.195909	-0.250496	73	0.000085
-0.2	-2556.196121	-0.250495	71	0.000054
0.0	-2552.932569	0.000000	55	0.000036
0.2	-2552.299550	0.204900	101	1.027883
0.4	-2557.587229	0.453673	70	0.000080
0.6	-2557.587201	0.453675	69	0.000087

• Ground state is determined to be $\beta_2 = 0.4537$, $E_{totcm} = -2557.587$ MeV

Determining the ground state

Potential energy curve (constrained calculations)

• PEC confirms the determining ground state.

Beta spacing and range

Uth (Z = 136) isotopes

Fermi energy

 $\swarrow \lambda_n$ and λ_p to determine the range of bound nuclei Fermi energy (MeV) ² ¹⁰ mmu -15 Neutron number

Fermi energy

 \swarrow λ_n and λ_p to determine the range of bound nuclei 10 Fermi energy (MeV) 5 0 Zancanconnan 년 Fermi energy (MeV) Fermi energy (MeV) 0.8 -5 0.4 0.4 0.0 λ -0.4 -0.4 -10 -0.8 -0.8 346 348 350 352 354 356 202 204 206 208 210 212 Neutron number Neutron number -15 100 150 200 250 300 350 400 450 Neutron number

• The bound range determined by $\lambda_{n/p}$ is $204 \le N \le 350$

Separation energy

 $\sim S_{2n}$ to determine the neutron drip nucleus

• The neutron-rich boundary determined by S_{2n} is N = 350

Uth: $204 \le N \le 350$

Progress of G-16

			calculate	analyze
	Utb Z = 132	even N		
Peng Guo		odd N		
Peng Guo	Utt Z = 133	even N		
		odd N		
	Utq Z = 134	even N		
Sibo Wang		odd N		
SIDU Walig	Utp Z = 135	even N		
		odd N		
	Uth Z = 136	even N		
		odd N		

Even-even nuclei \checkmark

Results of even-even nuclei

✓ Z = 132, 134, 136

 \checkmark Quadrupole deformation (Z = 132, 134, 136)

Similar mostly
 Different in several regions

Neutron number

- Behaviors around ① and ② are caused by the competition of prolate and oblate deformations. (Further check is required)
- Behaviors around (3) are caused by the softness of PEC around $\beta = 0$. 18

 \swarrow Competition of prolate and oblate deformations ((1)(2))

 \checkmark Softness of PEC around $\beta = 0$ (3)

Two interesting points

Also in C. Pan's talk (G13)

(1): Nuclei around N = 258 are not spherical, different with $Z \le 120$. (2): Drip line locates at N = 350, and nuclei around are spherical.

(1) Magic number N = 258 ?

 \swarrow N = 258 is predicted as a magic number by the DRHBc calculations for $Z \le 120$.

K. Y. Zhang et al., (DRHBc Mass Table Collaboration), Atom. Data Nucl. Data Tables 144, 101488 (2022)

• Nuclei around N = 258 are spherical nuclei (for $Z \le 120$).

(1) Magic number N = 258 ?

Nuclei with N=258 and Z=132, 134, 136 are not spherical.

 The minima with prolate and oblate deformations are superior in energy than the spherical case.

Whether neutron magic number N = 258 exist in superheavy region or not?

(1) Magic number N = 258 ?

Evaluation of single particle levels with deformation

- The gap near the spherical region (gray) still exists, but not significant.
- The gaps in the prolate and oblate regions (pink) are larger.

2 Magic number N = 350

Nuclei with N=350 and Z=132, 134, 136 are spherical nuclei.

• Support the N = 350 to be a magic number.

2 Magic number N = 350

Evaluation of single particle levels with deformation

• The gap near the spherical region (gray) is large.

Binding energy

 \swarrow Binding energy per nucleon (Z = 132, 134, 136)

• E_B/A monotonically decrease with the increasing of neutron number.

It is expected to firstly increase and then decrease.

Binding energy

① and ② locate in the same place !

Most bound nucleus and proton drip nucleus are the same !

27

β -stability line and proton drip line

 \checkmark Relationship between β -stability line and proton drip line

 β -stability line and proton drip line coincide with each other in superheavy region! Why?

Summary

Progress of G-16

Even-even nuclei $\sqrt{}$

		calculate	analyze
Z = 132	even N		
	odd N		
Z = 133	even N		
	odd N		
7 104	even N		
2 - 134	odd N		
Z = 135	even N		
	odd N		
Z = 136	even N		
	odd N		

 *l*Next ...

- Finish the calculations.
- Check the results carefully.

Some questions / notes / findings

The shell gap dominated by the neutron magic number N = 258 is reduced in the superheavy region.

 \ge N = 350 is predicted as a neutron magic number.

 $\leq \beta$ -stability line and proton drip line would coincide with each other in the superheavy region. Why?

The end Thanks

Visualization of DRHBc results via matlab script

dir.out + one click, you will get:

25

10

-12 -8 0

x

4

-4

Results for 394 Uth (Z = 136, N = 258) E_{tot} =-2534.8522, E_{totem} =-2539.444, E_{rot} =-2.0078, β =0.45124, r_m =7.352 0.09 12 Proton $r_p = 7.1237, r_c = 7.1685$ $\beta_p = 0.46302$ 8 0.06 $\rho_{p,\lambda}~({\rm fm^{-3}})$ $E_{pair,p} = -6.4319$ (MeV)4 0.03 0 ε_{p} -4 0 -8 -8 -12 -0.03 -10 10⁻² 10⁻⁴ -12 -8 8 12 8 12 16 4 0 Occupation probability v^2 x $r \,(\mathrm{fm})$ ρ (fm⁻³) 0.08 0.09 12 Neutron 0.06 <u>____</u> 8 0.06 $E_{pair,n} = -3.4573$ (MeV)4 0.04 U $0.03 r_n = 7.4695$ 0 $\beta_n = 0.44503$ $\rho_{n,\lambda}$ ε_n -4 0.02 0 -8 -6 -12 -0.03

Contact me to get the script. (wuxinhui@fzu.edu.cn)

0

8

 $r \, (\mathrm{fm})$

4

12

16

n

12

8

-5.9366

 10^{0}

 $\lambda_{p} = -3.1633$

 10^{0}

-8 10⁻⁴

10⁻²

Occupation probability v^2

Radius

Separation energy

Pairing energy

Pairing energy

