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Current status of nuclear mass research

O Mass (or binding energy): basic physical quantity, plays a crucial role in understanding the nuclear structure and studying
the astrophysical nucleosynthesis.

O Experiment: accurate measurement; AME2020 evaluate and recommends the masses of 3557 nuclei.

M. Wang, W. Huang, F. G. Kondev, G. Audi, and S. Naimi. Chinese Phys. C 45, 030003(2021)

O Theory: global model and local relation model

v" Global mass models: BW2, KTUY, FRDM12, WS4, HFB-31, DZ28, etc., about 0.3 MeV (WS4).

N. Wang, M. Liu, X.Z. Wu, J. Meng, Phys. Lett. B 734 (2014) 215.

the nuclear mass table in relativistic density functional theory: RCHB = DRHBc
At. Data Nucl. Data Tables 121-122 (2018) 1-215; At. Data Nucl. Data Tables 144 (2022) 101488; At. Data Nucl. Data Tables 158 (2024) 101661
v" Local relation model: Garvey-Kelson local mass relation (GK relation), or the neutron-proton interaction (0.2 MeV)
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Jiang H, Fu G J, Sun B, et al. Phys Rev C, 2012, 85: 054303.

Dy(N,Z)=M(N +1,Z) + M(N,Z — 1)+
M(N-1,Z+1)-M(N+1,Z—1)-
MN,Z+1)-M(N-1,Z)~0 .

Dy (N,Z)=M(N+1,Z2)+ M(N,Z+ 1)+
MN-1,Z-1)-M(N+1,Z+1)-
MN,Z-1)-M(N-1,2)=0,

Bao Man, Jiang Hui, Zhao Yumin. Systematic Study on Nuclear Mass and Related Physical Quantities. 2023,;40:141c

Although the predictive accuracy of nuclear mass models has improved significantly, theoretical models still fail to
meet the research needs of nuclear structure and celestial nucleosynthesis. 2/20



Machine learning

Machine learning in nuclear physics
» (D)NN: (Deep) Neural Network
BNN: Bayesian Neural Network

CNN: Convolutional Neural Network

MDN: Mixture Density Network

(B)GP: (Bayesian) Gaussian Processes

CGP: Constrained Gaussian Processes

|}

translation

DT: Decision Tree

NBP: Naive Bayesian Probability Classifier
SVM: Support Vector Machines

RBF: Radial Basis Function
KRR: Kernel Ridge Regression

voice recognition CLEAN: CLEAN Image Reconstruction
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Recent progress about machine learning

Chinese Physics C  Vol. 45, No. 12 (2021) 124107

Magnetic moment predictions of odd-A nuclei with the Bayesian neural
network approach”
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. 'College of Physics, Jilin University, Changchun 130012, China
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Y] 3 % 48 Acta Phys. Sin. Vol. 72, No. 15 (2023) 152101

Prediction of ground-state spin in odd-A nuclei within
decision tree”
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PHYSICAL REVIEW C 109, 044325 (2024)

Inference of parameters for the back-shifted Fermi gas model using a feedforward neural network

Nuclear Science and Techniques (2022) 33:153
https://doi.org/10.1007/541365-022-01140-9
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Abstract

Nuclear charge density distribution plays an important role in both nuclear and atomic physics, for which the two-parameter
Fermi (2pF) model has been widely applied as one of the most frequently used models. Currently, the feedforward neural
network has been employed to study the available 2pF model parameters for 86 nuclei, and the accuracy and precision of the
parameter-learning effect are improved by introducing A'/? into the input parameter of the neural network. Furthermore, the
average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant
difference between the average result of the density and parameter values for the average charge density distribution. In addi-
tion, the 2pF parameters of 284 (near) stable nuclei are predicted in this study, which provides a reference for the experiment.

Peng-Xiang Du®, Tian-Shuai Shang ©, Kun-Peng Geng, and Jian Li®"
College of Physics, Jilin University, Changchun 130012, China

Dong-Liang Fang ¢
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

® (Received 12 January 2024; accepted 25 March 2024; published 24 April 2024)

The back-shifted Fermi gas model is widely employed for calculating nuclear level density (NLD) as it
can effectively reproduce experimental data by adjusting parameters. However, selecting parameters for nuclei
lacking experimental data poses a challenge. In this study, a feedforward neural network (FNN) was utilized to
learn the level density parameters at neutron separation energy a(S,) and the energy shift A for 289 nuclei.
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Global prediction of nuclear charge density distributions using a
deep neural network

Tian Shuai Shang, Hui Hui Xie, Jian Li, and Haozhao Liang

Phys. Rev. C 110, 014308 — Published 2 July 2024 um
Article References No Citing Articles Supplemental Material ﬂ

>
ABSTRACT - e

A deep neural network (DNN) has been developed to generate the distributions of nuclear charge

density, utilizing the training data from the relativistic density functional theory and incorperating

available experimental charge radii of 1014 nuclei into the loss function. The DNN achieved a root-

mean-square deviation of 0.0193 fm for charge radii on its validation set. Furthermore, the DNN can M) Check for updates

Vol. 110, Iss. 1 — July 2024

imerove the descriet\cn in both the tail and central rﬁicns of the charge dEﬂSiEx. enhancing aareement
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Machine learning in nuclear mass predictions

% ANN: Gazula1992NPA, Athanassopoulos2004NPA, Bayram2014ANE,
Zhang2017JPG, Ming2022NST,Yuksel20211JMPE, Li2022PRC, Zeng2024PRC

* BNN: utama2016PRC, Niu2018PLB, Niu2019PRC, Niu2022PRCL,
Rodriguez2019EPL, Rodriguez2019JPG

% CNN: vang2023PRC DNN:ChenPRC2022, To-Chung-Yiu2024CPC

* LightGBM: Gao2021NST

* KRR: wu2020PRC, Wu2021PLB,Du2023CPC,Wu2022PLB,Wu2024PRC,Wu2023Front. Phys.
% NBP: Liu2021PRc PUN: Babette-DellenPLB2024

% RBF: Wang2011PRC, Niu2013,2016PRC,2018SciB

% BGP: Neufcourt2018,2020PRC, Neufcourt2019PRL

* SVM: clark20061MPB

% CLEAN: Morales2010PRC  IMIDN:A. E. Lovell2022PRC PIML: Mumpower2022PRC

Taken from Z. M. Niu (4 5 Bf) 5/20



Machine learning in nuclear mass predictions
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v' Although there are many studies using machine learning to predict nuclear masses, most of them achieve an
accuracy of only around 200 keV.

v To overcome this bottleneck, it is necessary to consider more physics, as demonstrated by some successful studies.

Provided by Y. H. Lu ( 5£74£)
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Nuclear mass predictions with Kernel Ridge regression
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® Avoid worsening mass predictions at large extrapolation distance.
Du, Guo, Wu, and Zhang, Chin. Phys. C 47, 074108 (2023) Wu, Lu, and Zhao, Phys. Lett. B, 834, 137394 (2022)

Wu, Pan, Zhang, and Hu, Phys. Rev. C, 109, 024310 (2024) Taken from X. H. Wu (2£#%) 7/20



Bayesian Machine Learning (BML) mass model
| Model | M | S, | S, | S, | Sp | S | Q

10 ¢ - FRDM12 0.576 0.340 0.442 0.341 0.420 0411 0.450
: . HFB-31 0.559 0.451 0456 0.489 0.496 0.566 0.557
WS4 0.285 0.254 0.261 0.261 0.300 0.324 0.327

s L ) BML 0.084 0.078 0.105 0.083 0.111 0.096 0.099
=
bé * A nuclear mass model with accuracy smaller than
. 100 keV in the known region is constructed.
\9“‘@&3@@?&&\";@5‘0{?&“ & % Its accuracies to S, and Q, are at least about 3
Ol & times higher than other mass models.

Z.M. Niu and H.Z. Liang, PRC 106, L021303 (2022)

Taken from Z. M. Niu (4 #145) 8/20



Motivation

v" Most machine learning-related work only considers global theoretical models and does not effectively

extract the local physical relationships of nuclear mass.

v" In this work, a global-local model based on convolutional neural network (CNN) is developed for the first
time. By gradually introducing more physical factors, the learning accuracy is further improved, and the

accuracy of 0.070 MeV is obtained.
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CNN: convolutional neural network

Convolutional neural networks (CNN) are neural networks that have at least one convolutional layer. Convolutional
networks are one of the most widely used basic neural network architectures. The convolution layer is a network layer that

uses convolution operations instead of ordinary matrix multiplication operations.
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Model framework and numerical details

547 | 55717 | 567n | 577n | 587n —— CNN-I3
NXN ‘ Input: 3(channels)*5*5
53 54 55 56 57 T NxN Channels: Z, N, the binding
Cu Cu Cu Cu Cu 7 energy of nearby nuclei.
>2Nj | *3Ni >Ni | >°Ni CNN-14
E Input: 4(channels)*5*5
51Co | 52Co | 53Co | 54Co | 55Co C_har_mels: Z, N, the
NXN > binding energy of nearby
NXN | [ e pairing &
6 =[D"+(-1)?]/2

v" The size of the convolution kernel is set as 3 x 3 with a stride of 1. The two dimensional convolution formula is

stated as
0w v) =) > gliNh—i,v—))
J

i
v" Activation function: ReLU(Rectified Linear Unit) v Difference between experimental mass and theoretical mass AM

x x=20
ReLUG) = {5 ¥2 0 = max(0,0) AM = M, — My,
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Directly learning mass CNN-I13: Z, N, neighbor mass

Proton number Z
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v' Difference between experimental
mass (AME2016) and CNN-I3
model prediction, overall RMSE:
0.535 MeV;

v" The results demonstrate a distinct

odd-even staggering.
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Proton number Z
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Directly learning mass CNN-I14: Z, N, neighbor mass, paring

Neutron number N

180

v' Difference between experimental mass
(AME2016) and CNN-14 predictions,
overall RMS: 0.291MeV

v The overall learning effect has been
significantly improved and prominent
odd-even staggering observed in the
results of the CNN-13 model almost
disappears, after considering the pairing

effect in the input

6 = [(-DV+(-1)%]1/2
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The mass prediction for CNN-WS4: Z, N. neighbor mass, paring

120 l-- rrrjrrrrfyrrrrrrrrr[rrrr[rrrryrrrryrrrrr|rrr1 -j / The WS4 nuclear maSS model iS
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Z=109 and N=174 chain: learning and extrapolation performance

(MeV)
_— O = N W A
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v' Extrapolation: overall RMSE is 0.211MeV (newly emerged nuclei from AME2020).

v’ Z=109: 0.994 MeV to —2.519 MeV; N=174: systematic deviation = Considering more physical factors,
especially considering physical models, both extrapolation and learning have achieved good results.
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AME2020: the training and test sets by 8:2

120 =-l rrrjryrrr|rrrryrrrryrrrr|rrrer[rrrr|yrrrr ey -j
: training set R - v The 3456 nuclei in AME2020 are
. 199 = testing set L -ﬂ'.'E_IEfi_.'-'-" : divided according to the ratio of
. pe B LT ] . _

2 80 | 82.’“'.-__._-':':_:;.:- 1 ] training set and testing set 8:2. The
E .'-'f':i's:"::-_'-' 4 e : RMSE for the training set is 0.095
= 60F AETIRES g - MeV and the RMSE for the test set is

: Ly :
g ) Dtk V- : 0.171 MeV.

N 40 = . :.'I"'_. ||Illr.l -
= Z . 52 Z v This result further demonstrates the

B 28|-.';-. '.-“_ i
~ 20 _20 = e Ll 4.'1 50 _ robustness of the CNN-WS4 model.
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Summary and prospect

Summary:
» A machine learning method based on convolutional neural network is used to learn the nuclear
mass for the first time.

» Considering the local relation, the features of the surrounding nuclei are extracted more carefully,

and the accuracy reaches 0.07 MeV.

» Gradually introducing more physical factors enhances the interpretability of the neural network. The

more physical factors are considered, the higher the accuracy can be achieved.
prospect:
» Network input level: Consider shell effect

» Network output level: do not only rely on the WS4 mass model, but also introduce more physical

models
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