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Evidence for a new nuclear ‘magic number’ from the
level structure of >*Ca
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We have surveyed the neutron separation energies
neutron-rich p-sd and the sd shell region. Very rece
dl‘ip line, or close to the dl'ip line, for nuclei of Z = 0. A ucuuvn-nuIMUEL UCPCHIUCLILE UL Jy SHUWS
clear breaks at N = 16 near the neutron drip line (7z = 3), which shows the creation of a new magic
number. A neutron-number dependence of o; shows a large increase of o; for N = 15, which supports
the new magic number. The origin of the new magic number is also discussed.
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Figure 1 | Schematic illustration highlighting the attractive interaction

between the proton 7f;,, and neutron »f;,, single-particle orbitals for
N = 34isotones. a—c, As protons are removed from the nf;;, orbital (from OFe
(a) through **Cr (b) to *°Ti (c)), the strength of the 7—v interaction decreases, as

represented by the decreasing width of the diagonal arrows, causing the vfs,,
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orbital to shift up in energy relative to the vps,,—vp,, spin-orbit partners.
Consequently, a sizable subshell closure presents itself at N = 32 in isotopes far
from stability. d, An additional subshell closure at N = 34 for HCais possible.
The vfs;> SPO is indicated as a bold dashed line to guide the eye.

Motobayashi, T. (2023). Magic Numbers Off the Stability Line. In: Tanihata, 1., Toki, H., Kajino, T. (eds) Handbook o
f Nuclear Physics . Springer, Singapore.



A well-known example: Pb(Z=82) isotopes
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Machine Learning



(In machine learning language)

“machine” = ‘model (from data)’

Learning = Improving performance at a task (ex) with experience

(In machine learning language)

“Learning” = Optimization of (machine’s/model’s) parameters via
a proper error function which represents performance at a task.

Therefore, | @m training a machine”

= | am building a new model (from data)



* Labeled data
* Direct feedback
* Predict outcome/future

Supervised

Learning

Unsupervised Reinforcement
* No labels * Decision process
* No feedback * Reward system
* “Find hidden structure” * Learn series of actions

http://solarisailab.com/archives/1785, &=2l2|A 0| 2l &3 X5 A7 A
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Machine Learning

* Machine learning (ML) is a field of artificial intelligence that uses statistical
techniques to give computer systems the ability to "learn” (e.%., progressively
improve performance on a specific task) from data, without being explicitly
programmed.!2!

« The name machine learning was coined in 1959 by Arthur Samuel.l'l Machine
learning explores the studg and construction of algorithms that can learn from and
make predictions on datal®! — such algorithms overcome following strictly static
program instructions by making data-driven predictions or decisions,*> through
building a model from sample inputs. Machine learning is employed in a range of
computing tasks where designing and programming explicit a Forithms with good
performance is difficult or infeasible; example applications include email filtering,
detection of network intruders, and computer vision.



https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_systems
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Machine_learning#cite_note-2
https://en.wikipedia.org/wiki/Arthur_Samuel
https://en.wikipedia.org/wiki/Machine_learning#cite_note-Samuel-1
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Machine_learning#cite_note-3
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Machine_learning#cite_note-bishop2006-4
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Email_filtering
https://en.wikipedia.org/wiki/Computer_vision

Some examples on ML



MNIST

image database of 70,000 handwritten digits
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Train with ML algorithm to recognize handwritten digits



ImageNET challenge

1000 object classes

mite container s motor scooter

mite &p motor scooter |
black widow lifeboat go-kart Jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

-

rilie musnroom C erry adagascar cat
vertible agaric dalmatian monkey
grille . mushroom grape spider monkey
pickup Jelly fungus elderberry titi
beach wagon gill fungus shire bullterrier indri
fire engine | dead-man’s-fingers currant howler monkey

Images : 1.2 M train
& 100k Test



Image Segmentation beyond simple image classification....
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AlphaGo v.s. Master Lee
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* Labeled data
* Direct feedback
* Predict outcome/future

Supervised

Learning

Unsupervised Reinforcement
* No labels * Decision process
* No feedback * Reward system
* “Find hidden structure” * Learn series of actions
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Unsupervised Learning (UL)

Using UL and neutron separation energy (Sn) to identify magic numbers can offer a new pe
rspective on traditional methods and theories. The use of unsupervised learning clustering t
echniques offers the following advantages:

Discovery of New Patterns: Unsupervised learning is useful for discovering patterns in unla
beled data. Clustering neutron separation energy data can reveal unexpected patterns of ma
gic numbers.

Verification of Theoretical Hypotheses: By comparing clustering results with existing theor
etical predictions, new theoretical hypotheses can be verified or existing theories can be mo
dified.

Data-Driven Approach: Machine learning can effectively handle large volumes of data, thus
enabling empirical research based on more precise and extensive experimental data.

Automation and Efficiency: Techniques such as clustering in unsupervised learning can be
automated, allowing for more efficient analysis of large datasets.



Clustering




Results and Analysis
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New Magic Number, N = 16, near the Neutron Drip Line 10 i

A. Ozawa,! T. Kobayashi,? T. Suzuki,> K. Yoshida,! and I. Tanihata!
'The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-0198, Japan 5 I
2Department of Physics, Tohoku University, Miyagi 980-8578, Japan

3Department of Physics, Niigata University, Niigata 950-2181, Japan
(Received 15 February 2000)

We have surveyed the neutron separation energies (S,) and the interaction cross sections (o) for the 0 L
neutron-rich p-sd and the sd shell region. Very recently, both measurements reached up to the neutron
drip line, or close to the drip line, for nuclei of Z = 8. A neutron-number dependence of S, shows i ) L X X | ) | ) ) ) ) | ) ) " L
clear breaks at N = 16 near the neutron drip line (T = 3), which shows the creation of a new magic 5 1 0 1 5 2 0
number. A neutron-number dependence of o; shows a large increase of o; for N = 15, which supports
the new magic number. The origin of the new magic number is also discussed.

Question: Can the machine find this new magic number?



KMedoids

Sp

Spectral

Sn

Sa

.
5 16 15
N
MeanShift
[ S i T

N

NN

10 15 20
N

Sh

10 15

N\

KMeans

/\/\/%

16

10 15 20

JarvisPatrick

N

Sh

KMedoids

NN/

Q) How can we improve this result?
A) Kernel method

SpanningTree

Sn

Agglomerate

Sh

NN/

A




—o—v—v—o-v--o—v-t—o-‘-‘--'-‘-‘?x

X
x s
b 4
b 4 X b 4 X
* X X X
ARSI Wi
o® *a
o’ ® S,
- ~
b 4 " @ @ ‘\ b 4
.' @ & \.
\ []
“ - " o x1
x % @ "x x
‘~n @ v" x
---------
b 4 X X
x x| % X
X X
X X
X >

r — {z,z°}

x ={x,x} > z= {xlz,\/fxlxz,x§}

Mapping function

7 X




(Nl Tl) — (NI Sn’ Szn)

DBSCAN Spectral

P 1 — —
// ‘ |
7 P

o KMeans v/

AT

JarvisPatrick
| ,

KMedOIdS

A le T

e
// ‘
/r//
/’ )
e
d
s
.,,,// ’
/ . ~— * .
By
10
N [ ]
15

SpanningTree

//‘ ‘ ®

/// |

Agglomerate

//./ ‘
,’/’ :
///
///’ ‘
,’/( ‘
ps
d
e
// .

/” ¢
~< ¢
7 . :

s ) 2

10
} [ ]
15




(3 Calcium (Z=20)

LETTER

doi:10.1038/naturel2522

Evidence for a new nuclear ‘magic number’ from the

level structure of **Ca

Atomic nudlei are finite quantum systems composed of two distinct °, H. Baba’, N. Fukuda’, S. Go', M. Honma",

types of fermion—protons and neutrons. In a manner
that of electrons orbiting in an atom, protons and neutrons in a
nucleus form shell structures. In the case of stable, naturally occur-
ring nuclei, large energy gaps exist between shells that fill completely
when the proton or neutron number is equal to 2, 8, 20, 28, 50, 82 or
126 (ref. 1). Away from stability, however, these so-called ‘magic
numbers’ are known to evolve in systems with a large imbalance of
protons and neutrons. Although some of the standard shell closures
can disappear, new ones are known to appear®’. Studies aiming to
identify and understand such behaviour are of major importance in
the field of experimental and theoretical nuclear physics. Here we
report a spectroscopic study of the neutron-rich nucleus >*Ca (a
bound system composed of 20 protons and 34 neutrons) using
proton knockout reactions involving fast radioactive projectiles.
The results highlight the doubly magic nature of **Ca and provide
direct experimental evidence for the onset of a sizable subshell clos-

ure at neutron number 34 in isotopes far from stability.

. :2,5 7 _ . )
similar to H. Sakt;ral , Y. Shiga’, P.-A. Soderstrom-,
foneda
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Figure 1 | Schematic illustration highlighting the attractive interaction
between the proton zf;, and neutron »f;,, single-particle orbitals for

N = 34isotones. a—c, As protons are removed from the nf;,, orbital (from 0pe
(a) through 8Cr (b) to *°Ti (c)), the strength of the 7—v interaction decreases, as
represented by the decreasing width of the diagonal arrows, causing the vfs/,
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orbital to shift up in energy relative to the vps;,—vpy/, spin-orbit partners.
Consequently, a sizable subshell closure presents itself at N = 32 in isotopes far
from stability. d, An additional subshell closure at N = 34 for Cais possible.
The vfs;» SPO is indicated as a bold dashed line to guide the eye.
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Conclusion

« We investigated the possibility of using machine learning to find new (kno
wn) magic numbers.

* In particular, we tried to use unsupervised clustering methods to identify t
he internal structure of the data and determine the magic number.

« We first verified that our clustering method is generally able to find the w
ell-known neutron magic numbers (126, 184) in the case of lead(Pb, Z=82)

 Additionally, for oxygen (O, Z=8), we found that the recently known new
magic number N=16 can be found by increasing the dimensionality of the
data (NI Sn) g (NI Sn: SZTl)°

» For Ca (Z=20), we showed that the magic number of N=42 can be well di
scovered by the clustering method.



« When new physical quantities such as charge radius are included, the dim
ensionality of the data is expected to increase further and identification of
the new magic number will become clearer.

nature LETTERS
thSICS https://doi.org/10.1038/541567-020-01136-5

Charge radii of exotic potassium isotopes
challenge nuclear theory and the magic
character of N=32
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Descriptions for the clustering algorithms:

Agglomerate (Single-Linkage Clustering Algorithm): This method incrementally forms clusters by mergi
ng similar data points. It combines clusters based on the nearest members.

DBSCAN (Density-Based Spatial Clustering of Applications with Noise): This method identifies clusters i
n high-density areas and excludes noise data points. It is capable of discovering clusters of arbitrary shape
s, which is useful when the sizes of the clusters vary.

Gaussian Mixture (Variational Gaussian Mixture Algorithm): This algorithm assumes that the data consi
sts of a mixture of several Gaussian distributions and forms clusters based on this assumption. It is a soft
clustering method that provides the probability of each data point belonging to various clusters.
Jarvis-Patrick (Jarvis-Patrick Clustering Algorithm): Clusters are formed based on the degree to which n
eighbors are shared.

KMeans: This algorithm groups data points into K clusters, finding the center of each cluster. It works by
minimizing the variance within each cluster.

KMedoids (Partitioning Around Medoids): Similar to KMeans, but this method uses data points as the c
enters of clusters, which makes it more robust to outliers.

MeanShift: This method shifts cluster centers towards the density centers of data points. It does not requi
re specifying the number of clusters beforehand, and the clusters can vary in shape and size.
Neighborhood Contraction: Forms clusters by moving data points towards high-density areas.

Spanning Tree (Minimum Spanning Tree-Based Clustering Algorithm): Uses a minimum spanning tree t
o form clusters based on the connectivity structure among data points.

Spectral: Forms clusters using eigenvectors and eigenvalues based on a graph that represents the similarit
y among data points. This method is suitable for data with complex structures.



