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➢Collective vibrations are one of the hot topics in nuclear physics and astrophysics.

⚫ Charge-exchange modes:  Isobaric Analog Resonance (IAR), Gamow-Teller Resonances (GTR) ……

• β-decay rates in r-process
T. Kajino et al. Prog. Part. Nucl. Phys. 107, 109 (2019).

• nuclear matrix elements of the neutrinoless double β-decay 
J. M. Yao et al. Prog. Part. Nucl. Phys. 126, 103965 (2022).

⚫ Non-charge-exchange modes:  Giant Dipole Resonances (GDR), Pygmy Dipole Resonances (PDR) …… 

• neutron capture rates in r-process 

• neutron skin thickness & symmetry energy parameters
X. Roca-Maza et al. Prog. Part. Nucl. Phys.  101, 96 (2018).

It’s important to improve the understanding of collective vibrations!
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taken from Y.-W. Hao

r-process

A. Bracco et al. Prog. Part. Nucl. Phys. 106, 360 (2019).

J. M. Yao et al. Prog. Part. Nucl. Phys. 126, 103965 (2022).
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S. Ebata et al. Phys. Scr. 92, 064005 (2017).

➢Theoretical descriptions:

⚫ ab initio approach
J. Birkhan et al. Phys. Rev. Lett. 118, 252501 (2017).

⚫ shell model
E. Caurier et al. Rev. Mod. Phys. 77, 427 (2005).

⚫ quasiparticle random-phase approximation (QRPA)

based on density functional theory (DFT); 
N. Paar et al. Rep. Prog. Phys. 70, 691–793 (2007).

QRPA is the most efficient method for global descriptions, 

but most applications are under spherical approximation.
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R. J. Furnstahl et al. Rep. Prog. Phys. 76, 126301 (2013).
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⚫ Nuclear deformation leads to considerable splitting in the transition strength. 

➢The deformation is necessary for global descriptions.
⚫ Many nuclei are deformed;
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➢QRPA for deformed nuclei:

⚫ Matrix diagonalization: 

D. Pena Arteaga et al.  Phys. Rev. C 77, 034317 (2008);

M. T. Mustonen et al. Phys. Rev. C 87, 064302 (2013);

Experimental data are well-reproduced,

but the cost of diagonalization increases extremely.

⚫ Quasiparticle finite amplitude method (QFAM):

T. Nakatsukasa et al. Phys. Rev. C 76, 024318 (2007)

T. Nikšić et al. Phys. Rev. C 88, 044327 (2013).

X. W. Sun et al. Phys. Rev. C 96, 024614 (2017).

A. Bjelčić et al. Comput. Phys. Commun. 253, 107184 (2020).

Theoretically equivalent to Matrix-QRPA;

By avoiding the diagonalization routine, it’s more efficient for global descriptions.
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Y. Xu et al. Phys. Rev. C 104, 044301 (2021).
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➢QFAM developments:

⚫ For non-charge-exchange transitions 

Skyrme QFAM: P. Avogadro et al. Phys. Rev. C 84, 014314 (2011) …….

Relativistic QFAM: T. Nikšić et al. Phys. Rev. C 88, 044327 (2013), X. W. Sun et al. Phys. Rev. C 96, 024614 (2017) …….

⚫ For charge-exchange transitions

Skyrme QFAM: M. T. Mustonen et al. Phys. Rev. C 10 (2016)…….

No relativistic QFAM model for charge-exchange transitions. 

Although, very recently, a new method adopting liner response theory in terms of separable interactions based on 

relativistic DFT with speed comparable to QFAM has been introduced. A. Ravlić et al. Preprint at http://arxiv.org/abs/2404.13266 (2024).

➢Relativistic DFTs preserve the Lorentz invariance and naturally include the spin-orbit interaction.

⚫ Based on relativistic QFAM, we have investigated the photon-absorption cross section systemically.
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Introduction

In this work, our aim is to develop a relativistic QFAM

model for charge-exchange transitions
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➢ Starting from time-dependent Hartree-Fock-Bogoliubov equation under the perturbation ℱ 𝑡 , 

iℏ𝜕𝑡ℛ 𝑡 = ℋ 𝑡 + ℱ 𝑡 , ℛ 𝑡 ,

➢ The first-order terms above correspond to the time-dependent linear-response equation,

iℏ𝜕𝑡δℛ 𝑡 = ℋ0, δℛ 𝑡 + δℋ 𝑡 , ℛ0 + ℱ 𝑡 , ℛ0 ,

➢ By Fourier transformation, linear-response equation can be written in the frequency domain,

𝜔δℛ 𝜔 = ℋ0, δℛ 𝜔 + δℋ 𝜔 , ℛ0 + ℱ 𝜔 , ℛ0 ,

Or written in quasiparticle representation (δℛ is represented as 𝒳 and 𝒴), know as QFAM equation,

𝐸𝜇 + 𝐸𝜈 − 𝜔 𝒳𝜇𝜈 𝜔 + 𝛿ℋ𝜇𝜈
20 𝜔 = −ℱ𝜇𝜈

20,

𝐸𝜇 + 𝐸𝜈 + 𝜔 𝒴𝜇𝜈 𝜔 + 𝛿ℋ𝜇𝜈
02 𝜔 = −ℱ𝜇𝜈

02,

For charge-exchange transitions, index 𝜇 & 𝜈 indicate quasiparticle with different projected isospin.
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➢The flow chart of QFAM equation
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➢p-h interaction: density-dependent point-coupling density functional

⚫ DD-PC1 + isovector-pseudovector channel αTPV = 0.734;
T. Nikšić et al. Phys. Rev. C 78, 034318 (2008); D. Vale et al. Phys. Rev. C 103, 064307 (2021).

➢p-p interaction: finite range separable pairing interaction (included in RHB, not yet in QFAM)

⚫ 𝐺 = 728 MeVfm3, 𝑎 = 0.644 fm
Y. Tian et al. Phys. Lett. B 676, 44 (2009).

➢Basis expansion: axially deformed harmonic oscillator (ADHO) basis

⚫ RHB: only Ω > 0;

⚫ QFAM: Ω > 0 & its time-reversed state ഥΩ ;

⚫ Major shell quantum number truncation: 𝑁max = 14 for large components, 𝑁max + 1 for small components.
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➢Compared with QRPA under the spherical approximation: 48Ca
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Numerical Details
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⚫ Fermi transition (natural parity, 𝐽𝜋 = 0+, 𝐾 = 0 ):

• Contributions of each channel:

only the TVtl part contributes;

• The numerical results are consistent with above analysis;

isovector-vector

(TV)

isovector-pseudovector

(TPV)

time-like (tl) TVtl √ TPVtl ×

space-like (sl) TVsl × TPVsl ×

* numerical check are truncated by 𝑁max = 4 for the calculation convenience.
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➢Compared with QRPA under the spherical approximation: 48Ca
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⚫ Gamow-Teller transition (Non-natural parity, 𝐽𝜋 = 1+, 𝐾 = 0,1 ):

• Contributions of each channel:

TVsl,TPVtl & TPVsl parts contribute;

• The numerical results are consistent with above analysis;

* numerical check are truncated by 𝑁max = 4 for the calculation convenience.

isovector-vector

(TV)

isovector-pseudovector

(TPV)

time-like (tl) TVtl × TPVtl √

space-like (sl) TVsl √ TPVsl √
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➢Selected nuclides to illustrate the deformation effects:
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Preliminary results: Gamow-Teller Transition in 24Mg & 28Si 

Theor. Expt. from NNDC

Nuclide B. E. [MeV] 𝛽2 𝐸pairing [MeV] 𝛽2 Pairing Gap

24Mg −194.229 +0.526 0.000 0.606 4.600

28Si −232.233 −0.376 0.000 0.412 4.353
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⚫ Considerable gaps in the well-deformed region lead to negligible pairing effects.
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➢GT− strengths of 24Mg
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Preliminary results: Gamow-Teller Transition in 24Mg & 28Si 
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*    24Mg(3He,t) from R. G. T. Zegers et al. Phys. Rev. C 78, 014314 (2008).

**   Expt. data shift by 𝑄𝛽 to compare with strength related to Ex(
24Mg)

*** 𝑄𝛽
Def. given by deformed g.s., while 𝑄𝛽

Sph.
 given by spherical g.s..

⚫ GTR centroid energy: 𝐸GTR =
∫ 𝐸𝑋 𝑆 d𝐸𝑋

∫ 𝑆 d𝐸𝑋
;

In spherical case, 𝐸GTR is overestimated;

In deformed case, 𝐸GTR becomes lower and closer to 

experimental data;

⚫ The deformation leads to the splitting in GT− strengths which 

is closer to the experimental data,

although the splitting is too much.

Z. M. Niu. PhD thesis (2011).

𝐸GTR
Expt.

[MeV] 𝐸GTR
Theor. [MeV] 𝐸GTR

Theor. − 𝐸GTR
Expt.

[MeV]

Sph. 13.257 15.137 +1.880

Def. 14.275 14.103 −0.172
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➢GT− strengths of 28Si
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Preliminary results: Gamow-Teller Transition in 24Mg & 28Si 
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*    28Si(p,n) from B. D. Anderson et al. Phys. Rev. C 43, 50 (1991).

**   Expt. data shift by 𝑄𝛽 to compare with strength related to Ex(
24Mg)

*** 𝑄𝛽
Def. given by deformed g.s., while 𝑄𝛽

Sph.
 given by spherical g.s..

⚫ GTR centroid energy: 𝐸GTR =
∫ 𝐸𝑋 𝑆 d𝐸𝑋

∫ 𝑆 d𝐸𝑋
;

In spherical case, 𝐸GTR is well reproduced, but without splitting;

In deformed case, 𝐸GTR becomes lower and underestimated.

⚫ The deformation leads to the splitting in GT− strengths which 

is closer to the experimental data,

but the 1st peak has underestimated excitation energy.

Z. M. Niu. PhD thesis (2011).

𝐸GTR
Expt.

[MeV] 𝐸GTR
Theor. [MeV] 𝐸GTR

Theor. − 𝐸GTR
Expt.

[MeV]

Sph. 15.594 15.613 +0.017

Def. 17.011 16.129 −0.882
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➢Summary

⚫ We have preliminary developed a relativistic QFAM model for charge-exchange transitions.

⚫ Nuclear deformation leads to the remarkable splitting in GT strength;

⚫ Nuclear deformation results in a lower GTR centroid energy compared to the spherical case.

➢Outlook

⚫ Completing the QFAM model by including pairing correlation;

⚫ Including the point-coupling functional with tensor coupling and with localized exchanged terms by 

Fierz transformation PCF-PK1; 

⚫ ……

FAM for Charge-Exchange Transitions in Axially Deformed Nuclei based 

on Relativistic EDF
157/16/2024

Summary and Outlook



Chen Chen (Lanzhou University)

Thank you!
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Appendix
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➢𝛽2-unconstrainted calculation: binding energies, deformations & peak energies
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